633 research outputs found

    Principal axis-based correspondence between multiple cameras for people tracking

    Full text link

    Spatiotemporal complexity of a ratio-dependent predator-prey system

    Full text link
    In this paper, we investigate the emergence of a ratio-dependent predator-prey system with Michaelis-Menten-type functional response and reaction-diffusion. We derive the conditions for Hopf, Turing and Wave bifurcation on a spatial domain. Furthermore, we present a theoretical analysis of evolutionary processes that involves organisms distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that the typical dynamics of population density variation is the formation of isolated groups, i.e., stripelike or spotted or coexistence of both. Our study shows that the spatially extended model has not only more complex dynamic patterns in the space, but also chaos and spiral waves. It may help us better understand the dynamics of an aquatic community in a real marine environment.Comment: 6pages, revtex

    Optimized Image Resizing Using Seam Carving and Scaling

    Get PDF
    International audienceWe present a novel method for content-aware image resizing based on optimization of a well-defined image distance function, which preserves both the important regions and the global visual effect (the background or other decorative objects) of an image. The method operates by joint use of seam carving and image scaling. The principle behind our method is the use of a bidirectional similarity function of image Euclidean distance (IMED), while cooperating with a dominant color descriptor (DCD) similarity and seam energy variation. The function is suitable for the quantitative evaluation of the resizing result and the determination of the best seam carving number. ifferent from the previous simplex-modeapproaches, our method takes the advantages of both discrete and continuous methods. The technique is useful in image resizing for both reduction/retargeting and enlarging. We also show that this approach can be extended to indirect image resizing

    Conservation of Carbohydrate Binding Interfaces — Evidence of Human HBGA Selection in Norovirus Evolution

    Get PDF
    Human noroviruses are the major viral pathogens of epidemic acute gastroenteritis. These genetically diverse viruses comprise two major genogroups (GI and GII) and approximately 30 genotypes. Noroviruses recognize human histo-blood group antigens (HBGAs) in a diverse, strain-specific manner. Recently the crystal structures of the HBGA-binding interfaces of the GI Norwalk virus and the GII VA387 have been determined, which allows us to examine the genetic and structural relationships of the HBGA-binding interfaces of noroviruses with variable HBGA-binding patterns. Our hypothesis is that, if HBGAs are the viral receptors necessary for norovirus infection and spread, their binding interfaces should be under a selection pressure in the evolution of noroviruses.Structural comparison of the HBGA-binding interfaces of the two noroviruses has revealed shared features but significant differences in the location, sequence composition, and HBGA-binding modes. On the other hand, the primary sequences of the HBGA-binding interfaces are highly conserved among strains within each genogroup. The roles of critical residues within the binding sites have been verified by site-directed mutagenesis followed by functional analysis of strains with variable HBGA-binding patterns.Our data indicate that the human HBGAs are an important factor in norovirus evolution. Each of the two major genogroups represents an evolutionary lineage characterized by distinct genetic traits. Functional convergence of strains with the same HBGA targets subsequently resulted in acquisition of analogous HBGA binding interfaces in the two genogroups that share an overall structural similarity, despite their distinct locations and amino acid compositions. On the other hand, divergent evolution may have contributed to the observed overall differences between and within the two lineages. Thus, both divergent and convergent evolution, as well as the polymorphic human HBGAs, likely contribute to the diversity of noroviruses. The finding of genogroup-specific conservation of HBGA binding interfaces will facilitate the development of rational strategies to control and prevent norovirus-associated gastroenteritis
    • …
    corecore